Bibliography

Below is a complete list of references for the content presented on this site, as well as additional resources for the interested reader.

  1. Alexander, J. C., and Antman, S. S., The ambiguous twist of Love, Quarterly of Applied Mathematics 40(1) 83–92 (1982).
  2. Altmann, S. L., Rotations, Quaternions, and Double Groups, Oxford University Press, New York (1986). Reprinted by Dover Publications in 2005.
  3. Altmann, S. L., Hamilton, Rodrigues, and the quaternion scandal, Mathematics Magazine 62(5) 291–308 (1989).
  4. Antman, S. S., Solution to Problem 71–24, “Angular velocity and moment potentials for a rigid body,” by J. G. Simmonds, SIAM Review 14(4) 649–652 (1972).
  5. Antman, S. S., Nonlinear Problems of Elasticity, 2nd ed., Springer-Verlag, New York (2005).
  6. Appell, P., Sur l’intégration des équations du mouvement d’un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau, Rendiconti del Circolo Matematico di Palermo 14(1) 1-6 (1900).
  7. Arun, K. S., Huang, T. S., and Blostein, S. D., Least-squares fitting of two 3-D point sets, IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5) 698-700 (1987).
  8. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, New York (1989). Translated from the Russian by K. Vogtmann and A. Weinstein.
  9. Ashbaugh, M. S., Chicone, C. C., and Cushman, R. H., The twisting tennis racket, Journal of Dynamics and Differential Equations 3(1) 67-85 (1991).
  10. Bar-Itzhack, I. Y., REQUEST: A recursive QUEST algorithm for sequential attitude determination, Journal of Guidance, Control, and Dynamics 19(5) 1034-1038 (1996).
  11. Borisov, A. V., and Mamaev, I. S., Rolling of a rigid body on plane and sphere. Hierarchy of dynamics, Regular and Chaotic Dynamics 7(2) 177-200 (2002).
  12. Britting, K. R., Inertial Navigation Systems Analysis, John Wiley & Sons, Inc., New York (1971). Reprinted by Artech House in 2010.
  13. Bryan, G. H., Stability in Aviation: An Introduction to Dynamical Stability as Applied to the Motion of Aeroplanes, Macmillan, London (1911).
  14. Casey, J., A treatment of rigid body dynamics, ASME Journal of Applied Mechanics 50(4a) 905–907 and 51 227 (1983).
  15. Casey, J., Geometrical derivation of Lagrange’s equations for a system of particles, American Journal of Physics 62(9) 836–847 (1994).
  16. Casey, J., On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum, Zeitschrift für angewandte Mathematik und Physik 46 S805–S847 (1995).
  17. Casey, J., and Lam, V. C., On the relative angular velocity tensor, ASME Journal of Mechanisms, Transmissions, and Automation in Design 108(3) 399–400 (1986).
  18. Cayley, A., On the motion of rotation of a solid body, Cambridge Mathematical Journal 3 224-232 (1843). Reprinted in pp. 28-35 of The Collected Mathematical Papers of Arthur Cayley, Sc.D., F.R.S., Vol. 1, Cambridge University Press, Cambridge (1889).
  19. Cayley, A., On certain results relating to quaternions, Philosophical Magazine 26 141–145 (1845). Reprinted in pp. 123–126 of The Collected Mathematical Papers of Arthur Cayley, Sc.D., F.R.S., Vol. 1, Cambridge University Press, Cambridge (1889).
  20. Cayley, A., Sur quelques propriétés des déterminants gauches, Journal für die reine und angewandte Mathematik 32 119-123 (1846). Reprinted in pp. 332-336 of The Collected Mathematical Papers of Arthur Cayley, Sc.D., F.R.S., Vol. 1, Cambridge University Press, Cambridge (1889).
  21. Chadwick, P., Continuum Mechanics: Concise Theory and Problems, Dover Publications, New York (1999). Reprint of the George Allen & Unwin Ltd., London, 1976 edition.
  22. Chaplygin, S. A., On a motion of a heavy body of revolution on a horizontal plane, Regular and Chaotic Dynamics 7(2) 119-130 (2002). English translation of the Russian paper published in 1897.
  23. Cheng, H., and Gupta, K. C., An historical note on finite rotations, ASME Journal of Applied Mechanics 56(1) 139–145 (1989).
  24. Christoffersen, J., When is a moment conservative?, ASME Journal of Applied Mechanics 56(2) 299-301 (1989).
  25. Coaplen, J. P., Kessler, P., O’Reilly, O. M., Stevens, D. M., and Hedrick, J. K., On navigation systems for motorcycles: The influence and estimation of roll angle, The Journal of Navigation 58(3) 375–388 (2005).
  26. Codman, E. A., The Shoulder: Rupture of the Supraspinatus Tendon and Other Lesions in or about the Subacromial Bursa, 2nd ed., T. Todd Company, Boston (1934).
  27. Cosserat, E., and Cosserat, F., Sur la statique de la ligne déformable, Compte Rendus de l’Académie des Sciences, Paris 145 1409-1412 (1907).
  28. Cosserat, E., and Cosserat, F., Théorie des Corps Déformables, A. Hermann et Fils, Paris (1909).
  29. Cushman, R., Hermans, J., and Kemppainen, D., The rolling disc, in: H. W. Broer, S. A. van Gils, I. Hoveijn, F. Takens (eds.), Nonlinear Dynamical Systems and Chaos, Progress in Nonlinear Differential Equations and Their Applications, Vol. 19, pp. 21-60, Birkhäuser, Basel (1996).
  30. Darboux, G., Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitesimal, Parts 1-4, Gauthier-Villars, Paris (1887-1896).
  31. Dichmann, D. J., Li, Y., and Maddocks, J. H., Hamiltonian formulations and symmetries in rod mechanics, in: J. P. Mesirov, K. Schulten, D. W. Sumners (eds.), Mathematical Approaches to Biomolecular Structure and Dynamics, pp. 71-113, Springer-Verlag, New York (1996).
  32. Dorst, L., First order error propagation of the Procrustes method for 3D attitude estimation, IEEE Transactions on Pattern Analysis & Machine Intelligence 27(2) 221–229 (2005).
  33. Eggert, D. W., Lorusso, A., and Fisher, R. B., Estimating 3-D rigid body transformations: A comparison of four major algorithms, Machine Vision and Applications 9(5–6) 272–290 (1997).
  34. Ericksen, J. L., and Truesdell, C., Exact theory of stress and strain in rods and shells, Archive for Rational Mechanics and Analysis 1(1) 295-323 (1958).
  35. Euler, L., Du mouvement de rotation des corps solides autour d’un axe variable, Mémoires de l’Académie des Sciences der Berlin 14 154–193 (1758). The title translates to “On the rotational motion of a solid body about a variable axis.” Reprinted in pp. 200–235 of Euler, L., Leonhardi Euleri Opera Omnia, II, Vol. 8, Orell Füssli, Zürich (1965). Edited by C. Blanc.
  36. Euler, L., Du mouvement d’un corps solides quelconque lorsqu’il tourne autour d’un axe mobile, Mémoires de l’Académie des Sciences der Berlin 16 176–227 (1760). The title translates to “On the motion of a solid body while it rotates about a moving axis.” Reprinted in pp. 313–356 of Euler, L., Leonhardi Euleri Opera Omnia, II, Vol. 8, Orell Füssli, Zürich (1965). Edited by C. Blanc.
  37. Euler, L., Problema algebraicum ob affectiones prorsus singulares memorabile, Novi Commentari Academiae Scientiarum Imperalis Petropolitanae 15 75-106 (1771). The title translates to “An algebraic problem that is notable for some quite extraordinary relations.”
  38. Euler, L., Formulae generales pro translatione quacunque corporum rigidorum, Novi Commentari Academiae Scientiarum Imperalis Petropolitanae 20 189–207 (1775). The title translates to “General formulas for the translation of arbitrary rigid bodies.” Reprinted in pp. 85–98 of Euler, L., Leonhardi Euleri Opera Omnia, II, Vol. 9, Orell Füssli, Zürich (1968). Edited by C. Blanc.
  39. Euler, L., Nova methodus motum corporum rigidorum determinandi, Novi Commentari Academiae Scientiarum Imperalis Petropolitanae 20 208–238 (1775). The title translates to “A new method for generating the motion of a rigid body.” Reprinted in pp. 99-125 of Euler, L., Leonhardi Euleri Opera Omnia, II, Vol. 9, Orell Füssli, Zürich (1968). Edited by C. Blanc.
  40. Euler, L., De motu corporum circa punctum fixum mobilum, in: Euler, L., Leonhardi Euleri Opera Postuma, Vol. 2, pp. 43–62, Orell Füssli, Zürich (1862). Reprinted in pp. 413–441 of Euler, L., Leonhardi Euleri Opera Omnia, II, Vol. 9, Orell Füssli, Zürich (1968). Edited by C. Blanc.
  41. Faruk Senan, A. F., and O’Reilly, O. M., On the use of quaternions and Euler-Rodrigues symmetric parameters with moments and moment potential, International Journal of Engineering Science 47(4) 595-609 (2009).
  42. Frenet, J.-F., Sur quelques propriétés des courbes à double courbure, Journal de Mathématiques Pures et Appliquées 17 437-447 (1852).
  43. Gauss, C. F., Mutationen des raumes, in: K. Gesellschaft der Wissenschaften zu Göttingen (ed.), Carl Friedrich Gauss Werke, Vol. 8, pp. 357–362, B. G. Teubner, Leipzig (1900).
  44. Gibbs, J. W., Elements of Vector Analysis, privately printed, New Haven, CT, pp. 1-36 (1881) and pp. 37-83 (1884). Reprinted in The Collected Works of J. Willard Gibbs, Vol. 2, Part 2, Yale University Press, New Haven (1948).
  45. Goodman, L. E., and Robinson, A. R., Effects of finite rotations on gyroscopic sensing devices, ASME Journal of Applied Mechanics 25 210-213 (1958).
  46. Grassia, F. S., Practical parameterization of rotations using the exponential map, Journal of Graphics Tools 3(3) 29-48 (1998).
  47. Gray, J. J., Olinde Rodrigues’ paper of 1840 on transformation groups, Archive for History of Exact Sciences 21(4) 375–385 (1980).
  48. Green, A. E., and Laws, N., A general theory of rods, Proceedings of the Royal Society A 293(1433) 145-155 (1966).
  49. Green, A. E., and Laws, N., Remarks on the theory of rods, Journal of Elasticity 3(3) 179-184 (1973).
  50. Green, A. E., and Naghdi, P. M., On thermal effects in the theory of rods, International Journal of Solids and Structures 15(11) 829-853 (1979).
  51. Green, A. E., Naghdi, P. M., and Wenner, M. L., On the theory of rods. I. Derivations from three-dimensional equations, Proceedings of the Royal Society A 337(1611) 451-483 (1974).
  52. Green, A. E., Naghdi, P. M., and Wenner, M. L., On the theory of rods. II. Developments by direct approach, Proceedings of the Royal Society A 337(1611) 485-507 (1974).
  53. Greenwood, D. T., Principles of Dynamics, 2nd ed., Prentice Hall, Englewood Cliffs, NJ (1988).
  54. Guo, Z.-H., Representations of orthogonal tensors, Solid Mechanics Archives 6 451–466 (1981).
  55. Gurtin, M. E., An Introduction to Continuum Mechanics, Academic Press, New York (1981).
  56. Hamilton, W. R., On a new species of imaginary quantities connected with a theory of quaternions, Proceedings of the Royal Irish Academy 2 424-434 (1844).
  57. Hamilton, W. R., Elements of Quaternions, Chelsea Publishing Company, New York (1967). Edited by C. J. Joly.
  58. Hanson, R. J., and Norris, M. J., Analysis of measurements based on the singular value decomposition, SIAM Journal on Scientific and Statistical Computing 2(3) 363-373 (1981).
  59. Healey, T. J., Material symmetry and chirality in nonlinearly elastic rods, Mathematics and Mechanics of Solids 7(4) 405-420 (2002).
  60. Horn, B. K. P., Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical Society of America A 4(4) 629–642 (1987).
  61. Howard, S., Žefran, M., and Kumar, V., On the 6 × 6 Cartesian stiffness matrix for three-dimensional motions, Mechanism and Machine Theory 33(4) 389-408 (1998).
  62. Kane, T. R., Likins, P. W., and Levinson, D. A., Spacecraft Dynamics, McGraw-Hill, New York (1983).
  63. Karapetyan, A .V., and Kuleshov, A. S., Steady motions of nonholonomic systems, Regular and Chaotic Dynamics 7(1) 81-117 (2002).
  64. Keat, J., Analysis of Least-Squares Attitude Determination Routine DOAOP, CSC Report CSC/TM-77/6034 (February 1977).
  65. Kehrbaum, S., and Maddocks, J. H., Elastic rods, rigid bodies, quaternions and the last quadrature, Philosophical Transactions of the Royal Society A 355(1732) 2117-2136 (1997).
  66. Kelvin, L., and Tait, P. G., Treatise on Natural Philosophy, reprinted ed., Cambridge University Press, Cambridge (1912).
  67. Kirchhoff, G., Über des gleichgewicht und die Bewegung eines unendlich dünnen elastichen Stabes, Journal für die reine und angewandte Mathematik 56 285-313 (1859).
  68. Korteweg, D. J., Extrait d’une lettre à M. Appell, Rendiconti del Circolo Matematico di Palermo 14(1) 7-8 (1900).
  69. Kreyszig, E., Differential Geometry, revised and reprinted ed., Toronto University Press, Toronto (1964). Reprinted by Dover Publications in 1991.
  70. Lagrange, J. L., Théorie de la libration de la Lune, et des autres phénomènes qui dépendent de la figure non sphèrique de cette Planète, Nouveaux Mémoires de l’Académie Royale des Sciences et des Belles-Lettres de Berlin 30 203–309 (1780-1782). Reprinted in pp. 5–122 of Oeuvres de Lagrange, Vol. 5, Gauthier-Villars, Paris (1870). Edited by J.-A. Serret.
  71. Lagrange, J. L., Mécanique Analytique, in: J.-A. Serret, G. Darboux (eds.), Joseph Louis de Lagrange Oeuvres, Vol. 11/12, 4th ed., Georg Olms Verlag, Heidelberg (1973).
  72. Landau, L. D., and Lifshitz, E. M., Mechanics, Vol. 1, 3rd ed., Butterworth-Heinenann, Oxford and Boston (1976). Translated from the Russian by J. B. Sykes and J. S. Bell.
  73. Lauderdale, T. A., and O’Reilly, O. M., On the restrictions imposed by non-affine material symmetry groups for elastic rods: Application to helical substructures, European Journal of Mechanics 26(4) 701-711 (2007).
  74. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge University Press, Cambridge (1927).
  75. Lurie, A. I., Analytical Mechanics, Springer-Verlag, New York (2002). Translated from the Russian by A. Belyaev.
  76. Markley, F. L., Attitude determination using vector observations and the singular value decomposition, Journal of the Astronautical Sciences 36(3) 245–258 (1988).
  77. Markley, F. L., Attitude determination using vector observations: A fast optimal matrix algorithm, Journal of the Astronautical Sciences 41(2) 261-280 (1993).
  78. Marko, J. F., and Siggia, E. D., Bending and twisting elasticity of DNA, Macromolecules 27(4) 981-988 (1994). Errata for this paper were published on pg. 4820 of Vol. 29.
  79. Marsden, J. E., and Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed., Springer-Verlag, New York (1999).
  80. Metzger, M. F., Faruk Senan, N. A., and O’Reilly, O. M., On the Cartesian stiffness matrix in rigid body dynamics: An energetic perspective, Multibody System Dynamics 24(4) 441-472 (2010).
  81. Metzger, M. F., Faruk Senan, N. A., O’Reilly, O. M., and Lotz, J. C., Minimizing errors associated with calculating the helical axis for spinal motions, Journal of Biomechanics 43(14) 2822-2829 (2010).
  82. Mladenova, C. D., and Mladenov, I. M., Vector decomposition of finite rotations, Reports on Mathematical Physics 68(1) 107-117 (2011).
  83. Murray, R. M., Li, Z., and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton (1994).
  84. Naghdi, P. M., The theory of shells and plates, in: S. Flügge, C. A. Truesdell (eds.), Handbuch der Physik, Vol. VIa/2, pp. 425-640, Springer, New York (1972).
  85. Naghdi, P. M., Finite deformation of elastic rods and shells, in: D. E. Carlson, R. T. Shield (eds.), Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 47-103. Martinus Nijhoff, The Hague (1982).
  86. Nikravesh, P. E., Wehage, R. A., and Kwon, O. K., Euler parameters in computational kinematics and dynamics. Part 1, ASME Journal of Mechanisms, Transmissions, and Automation in Design 107(3) 358-365 (1985).
  87. Norris, A. N., Euler-Rodrigues and Cayley formulae for rotation of elasticity tensors, Mathematics and Mechanics of Solids 13(6) 465-498 (2008).
  88. O’Reilly, O. M., The dynamics of rolling disks and sliding disks, Nonlinear Dynamics 10(3) 287-305 (1996).
  89. O’Reilly, O. M., On the computation of relative rotations and geometric phases in the motions of rigid bodies, ASME Journal of Applied Mechanics 64(4) 969-974 (1997).
  90. O’Reilly, O. M., The dual Euler basis: Constraints, potentials, and Lagrange’s equations in rigid body dynamics, ASME Journal of Applied Mechanics 74(2) 256–258 (2007).
  91. O’Reilly, O. M., Intermediate Dynamics for Engineers: A Unified Treatment of Newton-Euler and Lagrangian Mechanics, Cambridge University Press, Cambridge (2008).
  92. O’Reilly, O. M., Engineering Dynamics: A Primer, 2nd ed., Springer-Verlag, New York (2008).
  93. O’Reilly, O. M., and Payen, S., The attitudes of constant angular velocity motions, International Journal of Non-Linear Mechanics 41(7) 1–10 (2006).
  94. O’Reilly, O. M., and Varadi, P. C., Hoberman’s sphere, Euler parameters and Lagrange’s equations, Journal of Elasticity 56(2) 171–180 (1999).
  95. Oprea, J., Differential Geometry and its Applications, 2nd ed., Pearson/Prentice Hall, Upper Saddle River, NJ (2004).
  96. Panjabi, M. M., Centers and angles of rotation of body joints: A study of errors and optimization, Journal of Biomechanics 12(12) 911-920 (1979).
  97. Pfister, F., Bernoulli numbers and rotational kinematics, ASME Journal of Applied Mechanics 65(3) 758-763 (1998).
  98. Poinsot, L., Outlines of a New Theory of Rotatory Motion, Translated from the French of Poinsot with Explanatory Notes, Cambridge University Press, London (1834). Translated from the French article “Théorie nouvelle de la rotation des corps présentée á l’Institut le 19 Mai 1834” by C. Whitley.
  99. Poisson, S. D., A Treatise of Mechanics, Longmans, London (1842). Translated from the French by H. H. Harte.
  100. Politti, J. C., Goroso, G., Valentinuzzi, M. E., and Bravo, O., Codman’s paradox of the arm’s rotation is not a paradox: Mathematical validation, Medical Engineering and Physics 20(4) 257–260 (1998).
  101. Pujol, J., Hamilton, Rodrigues, Gauss, quaternions, and rotations: A historical reassessment, Communications in Mathematical Analysis 13(2) 1-14 (2012).
  102. Pujol, J., The Rodrigues equations for the composition of finite rotations: A simple ab initio derivation and some consequences, ASME Applied Mechanics Reviews 65(5) 054501 (2013).
  103. Rao, A. V., Dynamics of Particles and Rigid Bodies: A Systematic Approach, Cambridge University Press, Cambridge (2006).
  104. Rodrigues, O., Des lois géométriques qui régissent les déplacemens d’un système solide dans l’espace, et de la variation des coordonnées provenant de ses déplacements consideérés indépendamment des causes qui peuvent les produire, Journal des Mathématique Pures et Appliquées 5 380–440 (1840).
  105. Routh, E. J., The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies, 7th ed., Macmillan, London (1905).
  106. Rubin, M. B., Cosserat Theories: Shells, Rods and Points, Kluwer Academic Press, Dordrecht (2000).
  107. SAE International Surface Vehicle Information Report, Sign Convention for Vehicle Crash Testing, SAE standard J1733, rev. Nov. 2007. The original Dec. 1994 version is freely available to the public and can be found here.
  108. Savransky, D., and Kasdin, N. J., An efficient method for extracting Euler angles from direction cosine matrices, unpublished notes (2013).
  109. Schönemann, P. H., A generalized solution of the orthogonal Procrustes problem, Psychometrika 31(1) 1–10 (1966).
  110. Serret, J.-A., Sur quelques formules relatives à la théorie des courbes à double courbure, Journal de Mathématiques Pures et Appliquées 16 193-207 (1851).
  111. Shoemake, K., Animating rotation with quaternion curves, ACM SIGGRAPH Computer Graphics 19(3) 245-254 (1985).
  112. Shuster, M. D., A survey of attitude representations, Journal of the Astronautical Sciences 41(4) 439–517 (1993).
  113. Shuster, M. D., and Oh, S. D., Three-axis attitude determination from vector observations, Journal of Guidance, Control, and Dynamics 4(1) 70–77 (1981).
  114. Simmonds, J. G., Moment potentials, American Journal of Physics 52(9) 851–852 (1984). Errata published on pg. 277 of Vol. 53.
  115. Simmonds, J. G., A Brief on Tensor Analysis, 2nd ed., Springer-Verlag, New York (1994).
  116. Simo, J. C., and Vu-Quoc, L., A three-dimensional finite-strain rod model. Part II: Computational aspects, Computer Methods in Applied Mechanics and Engineering 58(1) 79-116 (1986).
  117. Söderkvist, I., and Wedin, P. A., Determining the movements of the skeleton using well-configured markers, Journal of Biomechanics 26(12) 1473–1477 (1993).
  118. Spivak, M., A Comprehensive Introduction to Differential Geometry, Volume 2, 2nd ed., Publish or Perish, Berkeley (1979).
  119. Spoor, C. W., and Veldpaus, F. E., Rigid body motion calculated from spatial co-ordinates of markers, Journal of Biomechanics 13(4) 391-393 (1980).
  120. Stuelpnagel, J., On the parameterization of the three-dimensional rotation group, SIAM Review 6(4) 422-430 (1964).
  121. Tait, P. G., On the rotation of a rigid body about a fixed point, Proceedings of the Royal Society of Edinburgh 25(2) 261-303 (1869). Reprinted in pp. 86–127 of Tait, P. G., Scientific Papers, Vol. 1, Cambridge University Press, Cambridge (1898).
  122. Thomson, W. T., Introduction to Space Dynamics, Dover Publications, New York (1986). Reprint of the John Wiley & Sons, Inc., New York, 1963 edition.
  123. Titterton, D. H., and Weston, J. L., Strapdown Inertial Navigation Technology, 2nd ed., The Institution of Electrical Engineers, Stevenage, United Kingdom (2004).
  124. Wahba, G., Problem 65-1, A least squares estimate of satellite attitude, SIAM Review 8(3) 384–386 (1966).
  125. Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press, Cambridge (1937).
  126. Wilson, C., D’Alembert versus Euler on the precession of the equinoxes and the mechanics of rigid bodies, Archive for History of Exact Sciences 37(3) 233–273 (1987).
  127. Wilson, E. B., Vector Analysis: A Text-Book for the Use of Students of Mathematics and Physics. Founded upon the Lectures of J. Willard Gibbs, 7th printing, Yale University Press, New Haven, CT (1931).
  128. Woltring, H. J., 3-D attitude representation of human joints: A standardization proposal, Journal of Biomechanics 27(12) 1399–1414 (1994).
  129. Woltring, H. J., Huiskes, R., de Lange, A., and Veldpaus, F. E., Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics, Journal of Biomechanics 18(5) 379–389 (1985).
  130. Yuan, X., Ryd, L., and Blankevoort, L., Error propagation for relative motion determined from marker positions, Journal of Biomechanics 30(9) 989-992 (1997).
  131. Ziegler, H., Principles of Structural Stability, Blasidell, Waltham, MA (1968). Second edition printed by Birkhäuser in 1977.